Fuzzy Output Support Vector Machine Based Incident Ticket Classification
نویسندگان
چکیده
منابع مشابه
Robustified distance based fuzzy membership function for support vector machine classification
Fuzzification of support vector machine has been utilized to deal with outlier and noise problem. This importance is achieved, by the means of fuzzy membership function, which is generally built based on the distance of the points to the class centroid. The focus of this research is twofold. Firstly, by taking the advantage of robust statistics in the fuzzy SVM, more emphasis on reducing the im...
متن کاملSupport Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran
Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...
متن کاملIncremental Support Vector Machine Classification
Using a recently introduced proximal support vector machine classifier [4], a very fast and simple incremental support vector machine (SVM) classifier is proposed which is capable of modifying an existing linear classifier by both retiring old data and adding new data. A very important feature of the proposed single-pass algorithm , which allows it to handle massive datasets, is that huge block...
متن کاملActive Support Vector Machine Classification
An active set strategy is applied to the dual of a simple reformulation of the standard quadratic program of a linear support vector machine. This application generates a fast new dual algorithm that consists of solving a finite number of linear equations, with a typically large dimensionality equal to the number of points to be classified. However, by making novel use of the Sherman-MorrisonWo...
متن کاملA QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEICE Transactions on Information and Systems
سال: 2021
ISSN: 0916-8532,1745-1361
DOI: 10.1587/transinf.2020edp7044